## **Topology Qualifying Exam January 2022**

**Instructions.** Please do each of the problems below, **justifying your work** to the best of your ability in the allotted time. When you have finished, please write and sign the honor code somewhere on your exam

"On my honor, I have neither given nor received any unauthorized aid on this exam."

then email it to Chris at cjl12@rice.edu.

- 1. Let S be a compact, connected, orientable surface of genus 3.
  - (a) Which compact, connected, orientable surfaces are covering spaces of S?
  - (b) How many regular (i.e. normal), connected 7-sheeted covers of S are there, up to isomorphism?
- 2. Let G be a finitely generated abelian group. Construct a (path-connected) topological space  $X_G$  with  $\pi_1(G) \cong G$ . You must show all your work. You may use the classification of finitely generated abelian groups, which implies G has the form  $\mathbb{Z}^k \oplus \mathbb{Z}_{p_1} \oplus \cdots \oplus \mathbb{Z}_{p_n}$ , for some integers  $k, p_1, \ldots, p_n$ .
- 3. Consider X, the wedge of two circles, viewed as a 1-complex with oriented edges (1-cells) labeled a and b, as shown below.



Let  $f: X \to X$  be a map which sends  $x_0$  to itself, sends the oriented edge a to the edge-path aba and the sends the edge b to the edge-path bab. Let  $M_f = X \times [0,1]/(x,1) \sim (f(x),0)$  be the mapping torus of f; that is, the quotient space of  $X \times [0,1]$  where every point (x,1) is identified to the point (f(x),0).

- (a) Compute  $H_p(M_f)$  for all p.
- (b) Compute  $H^p(M_f; \mathbb{Q})$  for all p, using the Universal Coefficient Theorem.
- 4. Let M be a compact, connected, orientable 4-dimensional manifold without boundary such that  $\pi_1(M) \cong \mathbb{Z}_{15}$  and  $H_2(M; \mathbb{Q}) \cong \mathbb{Q}^2$ . Let N be a connected 3-fold covering space of M.
  - (a) Calculate  $\pi_1(N)$ .
  - (b) Calculate  $H_p(M;\mathbb{Z})$  for each p
  - (c) Calculate  $\chi(M)$ .
  - (d) Calculate  $H_p(N;\mathbb{Z})$  for each p
  - (e) Prove that N admits no CW structure without 3-cells.
- 5. (a) Prove that every map  $f: S^4 \to \mathbb{C}P^2$  has degree 0.
  - (b) Suppose M is a closed, oriented manifold of dimension 4. Show there is a degree 1 map  $f : M \to S^4$ . You will need to explicitly describe this continuous map. (Note: Part (b) holds in all dimensions, not just dimension 4.)
- 6. Let  $F: \mathbb{R}^3 \to \mathbb{R}$  be the map given by  $F(x, y, z) = z x^2 y^2$  and let  $f: S^2 \to \mathbb{R}$  be the restriction to the sphere  $S^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$ . (Alternatively, if  $i: S^2 \to \mathbb{R}^3$  is inclusion, then  $f = F \circ i$ .) Prove that 0 is a regular value of f.