Analysis Exam, January 2023

Please put your name on your solutions, use different 8 1/2×11 in. sheets for different problems, and number the pages. In writing complete solutions, take care to give clear references to well-known results that you use.

1. Show that there is no function f that is holomorphic near $0 \in \mathbb{C}$ and satisfies

$$f\left(\frac{1}{n^2}\right) = \frac{n^2 - 1}{n^5}$$

for all large $n \in \mathbb{N}$.

2. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue integrable function. Prove that

$$\lim_{a \to +\infty} \int_{-\infty}^{+\infty} f(x) \sin(ax) \, dx = 0.$$

(Or, e.g., with e^{-iax} in place of $\sin(ax)$.)

- 3. Suppose that a function f is analytic and bounded on the half-plane $\{z \in \mathbb{C} \mid \text{Re} z > 0\}$. Prove that f is uniformly continuous on the half-plane $\{z \in \mathbb{C} \mid \text{Re} z > 1\}$.
- 4. Let μ be a finite Borel measure on \mathbb{R}^n . Let $\overline{B}(x,r)$ denote the closed ball of radius r centered at x and $\partial B(x,r)$ denote its boundary.
 - (a) Prove that if $x_n \to x$, then $\mu(\bar{B}(x,r)) \ge \limsup_{n \to \infty} \mu(\bar{B}(x_n,r))$.
 - (b) Prove that the map $x \mapsto \mu(\overline{B}(x,r))$ is continuous at x if and only if $\mu(\partial B(x,r)) = 0$.
- 5. Show that there is a function f(z), analytic in an open neighborhood U of z = 0, such that

$$f(z)^{10} = \frac{1}{\cos(z^5 + 2z^7)} - 1$$

for all $z \in U$.

6. Assume $f \in C_c^{\infty}(\mathbb{R})$ satisfies

$$\int_{\mathbb{R}} e^{-tx^2} f(x) dx = 0$$

for any $t \ge 0$. Show that f(x) = -f(-x) for any $x \in \mathbb{R}$.