Analysis Exam, May 2020

Please put your name on your solutions, use 8 $1/2 \times 11$ in. sheets, and number the pages.

- 1. Denote $\mathbb{C}_+ = \{z \in \mathbb{C} \mid \operatorname{Im} z > 0\}.$
 - (a) Let $f: \mathbb{C} \to \mathbb{C}_+$ be an analytic function. Prove that f is constant.
 - (b) Let $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}_+$ be an analytic function. Prove that f is constant.
- 2. (a) Let $f \in L^1([0, 2\pi], dx)$ and define $\hat{f}_n = \int_0^{2\pi} e^{-inx} f(x) dx$ for $n \in \mathbb{Z}$. Prove that $\lim_{n \to \infty} \hat{f}_n = 0$.
 - (b) Prove that there exists a finite positive measure μ on $[0, 2\pi]$ such that the Fourier coefficients $\hat{\mu}_n = \int_0^{2\pi} e^{-inx} d\mu(x)$ do not converge to 0 as $n \to \infty$.
- 3. Prove that the integral

$$\int_0^\infty \frac{2x^2 - 1}{x^4 + 5x^2 + 4} \, dx$$

exists and find its value.

- 4. (a) Define the total variation of a function $f:[0,1]\to\mathbb{C}$.
 - (b) Assuming that f has finite total variation, estimate the total variation of the function $g:[0,1]\to\mathbb{C}, g(x)=\int_0^1 f(xy)\,dy$, in terms of the total variation of f.
 - (c) If f is absolutely continuous, prove that g is absolutely continuous.
- 5. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ are integrable. Define the *convolution* of f and g, denoted by f * g, by

$$f * g(x) = \int_{\mathbb{D}^n} f(y)g(x - y)dy.$$

- 1. If f and g are in L^1 , then prove that f * g is in L^1 .
- 2. How are (f * g)(x) and (g * f)(x) related?
- 3. Give an example of a smooth L^1 function f and a discontinuous L^1 function g with the property that f * g is smooth.
- 4. Give an example of a discontinuous L^1 function f and a discontinuous L^1 function g with the property that f * g is continuous.
- 6. Suppose that f is analytic on the disk $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}, \epsilon > 0$, and $\lim_{n \to \infty} f(z_n) = 0$ for any sequence $z_n \in \mathbb{D}$ that converges to $e^{i\theta}$ for some $\theta \in (0, \epsilon)$. Prove that f is identically 0.