ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, WINTER 2022

Instructions:

• You should complete this exam in a single four block of time. Attempt all six problems.
• The use of books, notes, calculators, or other aids is not permitted.
• Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
• Write and sign the Honor Code pledge at the end of your exam.

Date: January 10, 2022.
(1) Show that any group \(G \) of order 32 has center not equal to \(\langle e \rangle \).

(2) Let \(R \) be a commutative ring with 1.
 (a) Suppose that \(P \) is a prime ideal of \(R \). Is \(P[x] \) a prime ideal of \(R[x] \)? Prove or provide a counterexample.
 (b) Suppose that \(M \) is a maximal ideal of \(R \). Is \(M[x] \) a maximal ideal of \(R[x] \)? Prove or provide a counterexample.

(3) Describe all of the \(\mathbb{Z} \)-module homomorphisms from \(\mathbb{Z}/6\mathbb{Z} \) to \(\mathbb{Z}/9\mathbb{Z} \).

(4) Let \(p(x) \) be an irreducible polynomial over \(\mathbb{Q} \).
 (a) Compare the degree of \(p(x) \) and the order of the Galois group \(G \) of \(p(x) \).
 (b) Provide an example to show that we can have \(\deg(p(x)) \neq |G| \) when \(G \) is nonabelian. Include brief reasoning.
 (c) Show that \(\deg(p(x)) = |G| \) when \(G \) abelian.

(5) Let \(R \) be an integral domain, with field of fractions \(F \). Show that \(F = R \) if and only if \(F \) is a finitely generated \(R \)-module.

(6) Let \(V \) be an \(n \)-dimensional complex vector space. Given the characteristic polynomial of a linear operator \(T : V \to V \), determine the characteristic polynomial of the linear operator \(T^\wedge m : \wedge^m V \to \wedge^m V \), for any integer \(m > 1 \).