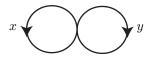
January 2013 - TOPOLOGY QUALIFYING EXAM - RICE UNIVERSITY

This is a 3 hour, closed book, closed notes exam. Please include thorough justifications, as much as time allows. Sign the honor pledge at the conclusion of the exam.

- (1) If X is a 2-dimensional disk with two open sub-disks removed, discuss **2-fold** covering spaces of X. Your discussion might include: relations to $\pi_1(X)$, examples, pictures, what are the possible groups of covering transformations, how many covers are there up to equivalence, are they regular?
- (2) Determine exactly which cyclic groups can act (freely and) properly discontinuously on the closed orientable surface, Σ_8 , of genus 8. Which of these can act on Σ_8 with orientable quotient?
- (3) Let $X = S^1 \vee S^1$ be a wedge of circles labelled x and y (as indicated below). Let Y be the space obtained by attaching two 2-cells to X along the curves $x^2y^{-1}xy^2$ and yx^5yx , respectively.



- (a) Compute a presentation of $\pi_1(Y)$ and express its abelianization in the form $\mathbb{Z}^m \oplus \mathbb{Z}_{n_1} \oplus \dots$
- (b) Compute $H_p(Y; \mathbb{Z}_3)$ for all p.
- (c) Compute $H^p(Y;\mathbb{Z})$ for all p without using a Universal Coefficient Theorem.
- (4) Let X be a closed, connected, orientable 4-dimensional manifold with $\pi_1(X) \cong \mathbb{Z}_{15}$ and $H_2(X; \mathbb{Q}) \cong \mathbb{Q}^3$. Let E be a connected 3-fold covering space of X.
 - (a) What is $\pi_1(E)$?
 - (b) Calculate $H_i(X;\mathbb{Z})$ for each *i*. What is $\chi(X)$?
 - (c) Calculate $H_i(E;\mathbb{Z})$ for each *i*.
 - (d) Prove that E admits no CW decomposition without 3-cells.
- (5) Let $f: S^2 \times S^6 \to \mathbb{C}P^4$ be a continuous map. Prove that f induces the zero map on $H_6(-;\mathbb{Z})$ and $H_8(-;\mathbb{Z})$.
- (6) Suppose (X, A) is a pair of topological spaces. State, and sketch the proof of, the theorem asserting the existence of a long exact sequence in homology for this pair. The proof sketch is viewed as the major content of this problem. Define the boundary homomorphism (the one that decreases degree).