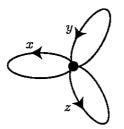

RICE UNIVERSITY TOPOLOGY QUALIFYING EXAM - MAY 2008

This is a 3-hour closed book, closed notes exam. Please show all of your work.

1. Let $W = S^1 \vee S^1$ be the wedge of 2 circles. Describe four distinct connected 3-fold covering spaces of W including at least one irregular cover. In each case, give the group of covering transformations, say whether or not the covering is normal (regular) and give the corresponding subgroup of $\pi_1(W)$.


2. Let S and S' be orientable surfaces of genus 2 as show below. Let X be the space obtained from $S \sqcup S'$ by identifying the circle γ in S to the circle γ' in S'.

a) Give a presentation for $\pi_1(X)$.

b) Compute $H_p(X)$ for all p.

3. Let $W = S^1 \vee S^1 \vee S^1$ as shown below. Let x, y, z be the three loops indicated going around the first, second, third circles respectively. Let $X = W \cup_{f_1} e_1^2 \cup_{f_2} e_2^2$ be the space obtained from W by adjoining one 2-cell via the map f_1 which forms the loop $xyx^{-1}zy^{-1}z^{-1}$; and another 2-cell via the map f_2 which forms the loop x^7 .

a) Give a cellular chain complex for X (including the boundary maps).

b) Compute $H_p(X;\mathbb{Z}_2)$ for all p.

c) Compute $H^p(X;\mathbb{Q})$ for all p without using a Universal Coefficient Theorem.

4. Suppose $f: I \to Y$ is a path in Y and $g: I \to I$ is a continuous map such that g(0) = 0 and g(1) = 1. Prove that f is homotopic to $f \circ g$.

5. Let X and Y be compact, connected, oriented *n*-dimensional manifolds without boundary and let $f: X \to Y$ be a continuous map. Suppose $\beta_p(X) < \beta_p(Y)$ for some p > 0.

- a) Prove that $f^*: H^p(Y; \mathbb{Q}) \to H^p(X; \mathbb{Q})$ has a non-trivial kernel.
- b) Show that f is a degree zero map.