## RICE UNIVERSITY TOPOLOGY QUALIFYING EXAM - MAY 2008

This is a 3-hour closed book, closed notes exam. Please show all of your work.

1. Let $W=S^{1} \vee S^{1}$ be the wedge of 2 circles. Describe four distinct connected 3 -fold covering spaces of $W$ including at least one irregular cover. In each case, give the group of covering transformations, say whether or not the covering is normal (regular) and give the corresponding subgroup of $\pi_{1}(W)$.
2. Let $S$ and $S^{\prime}$ be orientable surfaces of genus 2 as show below. Let $X$ be the space obtained from $S \sqcup S^{\prime}$ by identifying the circle $\gamma$ in $S$ to the circle $\gamma^{\prime}$ in $S^{\prime}$.

a) Give a presentation for $\pi_{1}(X)$.
b) Compute $H_{p}(X)$ for all $p$.
3. Let $W=S^{1} \vee S^{1} \vee S^{1}$ as shown below. Let $x, y, z$ be the three loops indicated going around the first, second, third circles respectively. Let $X=W \cup_{f_{1}} e_{1}^{2} \cup_{f_{2}} e_{2}^{2}$ be the space obtained from $W$ by adjoining one 2-cell via the map $f_{1}$ which forms the loop $x y x^{-1} z y^{-1} z^{-1}$; and another 2 -cell via the map $f_{2}$ which forms the loop $x^{7}$.

a) Give a cellular chain complex for $X$ (including the boundary maps).
b) Compute $H_{p}\left(X ; \mathbb{Z}_{2}\right)$ for all $p$.
c) Compute $H^{p}(X ; \mathbb{Q})$ for all $p$ without using a Universal Coefficient Theorem.
4. Suppose $f: I \rightarrow Y$ is a path in $Y$ and $g: I \rightarrow I$ is a continuous map such that $g(0)=0$ and $g(1)=1$. Prove that $f$ is homotopic to $f \circ g$.
5. Let $X$ and $Y$ be compact, connected, oriented $n$-dimensional manifolds without boundary and let $f: X \rightarrow Y$ be a continuous map. Suppose $\beta_{p}(X)<\beta_{p}(Y)$ for some $p>0$.
a) Prove that $f^{*}: H^{p}(Y ; \mathbb{Q}) \rightarrow H^{p}(X ; \mathbb{Q})$ has a non-trivial kernel.
b) Show that $f$ is a degree zero map.
