RICE UNIVERSITY TOPOLOGY QUAL AUGUST, 2009

Time limit 3 hrs. Closed book and notes. Concentrate on good exposition with clear and complete answers. At the end of the exam, write and sign the Rice Honor Pledge: I have neither given nor received unauthorized aid on this exam.

1. Let S_g be the closed, orientable surface of genus g.

(a) Show that for $g \ge 2$, S_g is a covering space of S_2 .

(b) Is the degree of the covering (in (a)) determined by g? If so what is this degree? If not give examples.

2. Show that the only non-trivial group which can act freely and properly on an even dimensional sphere, \mathbb{S}^{2n} , is the group of order two.

3. Let C_n be the space obtained by attaching a 2-cell \mathbb{B}^2 to \mathbb{S}^1 by the map

 $f: \partial \mathbb{B}^2 \to \mathbb{S}^1$, given by $f(z) = z^n$

(a) Describe $\pi_1(C_n)$ and $H_*(C_n)$.

(b) Do the same for $X = C_n \cup_{\mathbb{S}^1} C_m$ – the space obtained by identifying the copies of \mathbb{S}^1 in each. (n, m arbitrary positive integers.)

4. Determine the integral homology and cohomology groups of $X = \mathbb{CP}(2) \times \mathbb{S}^1$.

5. Describe a 1-dimensional complex on which the symmetric group Σ_3 acts freely and properly. Also describe the action and the quotient space.

6. Prove that every continuous map $f: \mathbb{S}^3 \to \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ has degree zero.

7. Suppose M is a compact, orientable 3-dimensional manifold such that $H_i(W; \mathbb{Q}) \cong H_i(\mathbb{B}^3; \mathbb{Q})$ for all i. Prove that ∂W is a non-empty disjoint union of 2-spheres.