(1) Let f be a complex-valued function defined on \mathbb{R} which is Lebesgue measurable and has

$$\int_{-\infty}^{\infty} |f(x)| \, dx < \infty .$$

Consider the infinite series

$$g(x) = \sum_{n=-\infty}^{\infty} f(x+n) .$$

- (a) Prove that for almost every $x \in \mathbb{R}$, the series defining g(x) is absolutely convergent. (Therefore g(x) is well defined almost everywhere, and periodic with period 1.)
 - (b) Prove that $\int_0^1 |g(x)| dx \leq \int_{-\infty}^{\infty} |f(x)| dx$.
- (2) Let $z_0 \in \mathbb{C}$ with $z_0 \neq 1$. For every integer n, calculate the counterclockwise integral

$$\int_{|z|=1} (z-z_0)^n \, dz \ .$$

(3) Consider a sequence of Lebesgue measurable functions $f_n:[0,1]\to[0,\infty)$, and recall that Fatou's Lemma states that

$$\int_{[0,1]} \left(\liminf_{n \to \infty} f_n \right) dx \le \liminf_{n \to \infty} \int_{[0,1]} f_n dx .$$

(a) Give an example of such a sequence for which

$$\int_{[0,1]} \left(\liminf_{n \to \infty} f_n \right) dx < \liminf_{n \to \infty} \int_{[0,1]} f_n dx.$$

(b) Give a (different) example of such a sequence for which

$$\int_{[0,1]} \left(\limsup_{n \to \infty} f_n \right) dx > \limsup_{n \to \infty} \int_{[0,1]} f_n dx.$$

- (4) (a) State the Argument Principle, which is an integral formula for the number of zeroes (counting multiplicities) of a complex-valued function f which is continuous on $|z| \le 1$, holomorphic on |z| < 1, and nonvanishing on |z| = 1.
 - (b) Let D be a connected open subset of \mathbb{C} and consider a sequence f_n of holomorphic functions on D which converge uniformly to a holomorphic function f. Assuming that each f_n is injective (one-to-one), prove that

either f is also an injection or f is a constant.

Turn over for problems (5) and (6).

(5) This problem concerns the space $L^2(\mathbb{R})$ consisting of Lebesgue measurable functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$||f|| = \left(\int_{\mathbb{R}} |f(x)|^2 dx\right)^{1/2} < \infty.$$

Let $f, g \in L^2(\mathbb{R})$ and assume ||f|| > 0. Prove that the limit

$$\lim_{t\to\infty}\frac{\|f+tg\|-\|f\|}{t}$$

exists, and calculate it.

(6) Again let D be a connected open subset of \mathbb{C} , and suppose $z_0 \in D$. Denote by U the open unit disc : $U = \{z \in \mathbb{C} \mid |z| < 1\}$, and let

$$\mathcal{H} = \{ \text{ holomorphic } f: D \to U \}$$
.

Define

$$P(z_0) = \sup\{|f'(z_0)| \mid f \in \mathcal{H}\}.$$

- (a) Prove that $0 \le P(z_0) < \infty$.
- (b) Give an example of a D, z_0 for which $P(z_0) = 0$.
- (c) Prove that

$$P(z_0) = \sup\{|f'(z_0)| \mid f \in \mathcal{H} \text{ and } f(z_0) = 0\}$$
.

(d) In case D = U and $z_0 = 0$, calculate $P(z_0)$.