ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, SPRING 2017

Instructions:

- You have **four** hours to complete this exam. Attempt all **six** problems.
- The use of books, notes, calculators, or other aids is **not** permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.

Date: May 9, 2017.

- (1) Classify, up to isomorphism, groups of order 21.
- (2) (a) Suppose that $f(x) \in \mathbb{Q}[x]$ is irreducible, has degree 4, and has exactly two real roots. What are the possibilities for the Galois group of the splitting field of f(x)? Justify.
 - (b) Suppose that $f(x) \in \mathbb{Q}[x]$ is irreducible, has degree 3, and has negative discriminant. What are the possibilities for the Galois group of the splitting field of f(x)? Justify.
- (3) Let i denote a primitive fourth root of unity.
 - (a) Determine the irreducible polynomial for $a = i + \sqrt{2}$ over \mathbb{Q} .
 - (b) Determine the automorphism group of $\mathbb{Q}(a)$. Is $\mathbb{Q}(a)$ a Galois extension of \mathbb{Q} ?
- (4) Let $M_2(\mathbb{C})$ denote the complex vector space of 2×2 matrices. Let

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and let $T: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ be the linear transformation defined by

$$T(X) = XA - AX.$$

Determine the Jordan canonical form for T.

- (5) Let A be a commutative ring with unit, and let $S \subset A$ be a multiplicatively closed subset.
 - (a) Suppose that A is Noetherian. Is the localization $S^{-1}A$ Noetherian?
 - (b) Suppose instead that $S^{-1}A$ is Noetherian. Must the original ring A be Noetherian?
- (6) Let $f: A \to B$ be an injective map between commutative rings with unit that makes B an integral extension of A. Prove that the induced map on prime spectra $f^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is closed, i.e., it maps closed sets to closed sets.

[Hint: First reduce the problem to proving that $f^*(\operatorname{Spec}(B))$ is closed in $\operatorname{Spec}(A)$.]