RICE UNIVERSITY TOPOLOGY QUALIFYING EXAM - JANUARY 2018

This is a 4 hour, closed book, closed notes exam. Justify all of your work, as much as time allows. Write and sign the Rice honor pledge at the end of the exam.

Honor pledge: On my honor, I have neither given nor received any unauthorized aid on this exam.

- 1. Prove that $SL_n(\mathbb{R})$ is a smooth manifold and calculate its dimension (with proof).
- 2. Let $X = S^1 \times \mathbb{R}P^2$, where $\mathbb{R}P^2$ is the real projective plane. Discuss all of the covering spaces of X. How many are there? Describe them. What are their groups of covering transformations? Which ones are regular (normal)?
- 3. Let F(n) be the free group of rank n. For each integer $n \ge 2$, prove that F(2) contains a finite index normal subgroup isomorphic to F(n).
- 4. Let X be a topological space. Define the suspension S(X) to be the space obtained from $X \times [0, 1]$ by contracting $X \times \{0\}$ to a point and contracting $X \times \{1\}$ to another point. That is,

$$S(X) = X \times [0,1] / \sim$$

where $(x, 0) \sim (y, 0)$ and $(x, 1) \sim (y, 1)$ for all $x, y \in X$. Describe the relation between the cohomology groups of X and S(X).

- 5. Let X be a closed, oriented 4-manifold with $\pi_1(X) \cong \mathbb{Z}/15\mathbb{Z}$ and $\chi(X) = 5$. Let \widetilde{X} be a connected 3-fold covering space of X. Calculate $H_i(\widetilde{X};\mathbb{Z})$ for all i.
- 6. Let X be a closed (compact and boundaryless), oriented 4-manifold with $\beta_2(X) \neq 0$. Prove that any continuous map $f: S^4 \to X$ has degree equal to 0.